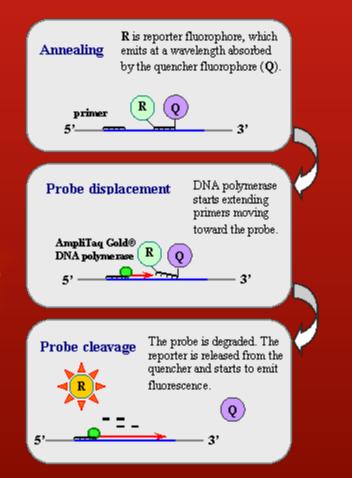
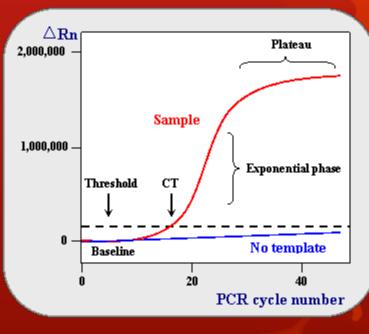
Name: Chris Wong Supervisor: Prof. Margaret Ip Joint Graduate Seminar Department of Microbiology The Chinese University of Hong Kong 18th December 2012

Current molecular diagnostic system


Detection of target nucleic acid

o quantitative PCR (qPCR)


Fluorescent dye/fluorescently-labelled oligonucleotides

Quantitative PCR (qPCR)

TaqMan® Applied Biosystems

Model of real time quantitative PCR plot

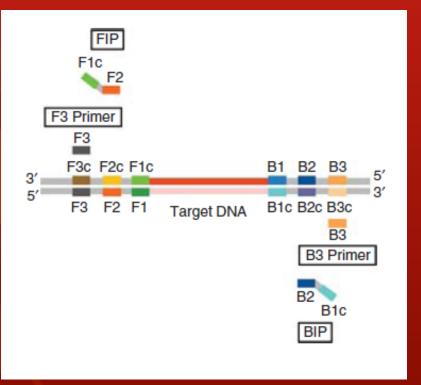
NCBI 2012. Published online: http://www.ncbi.nlm.nih.gov/projects/geno me/probe/doc/TechQPCR.shtml

Quantitative PCR (qPCR)

• Strict requirements on assay equipments

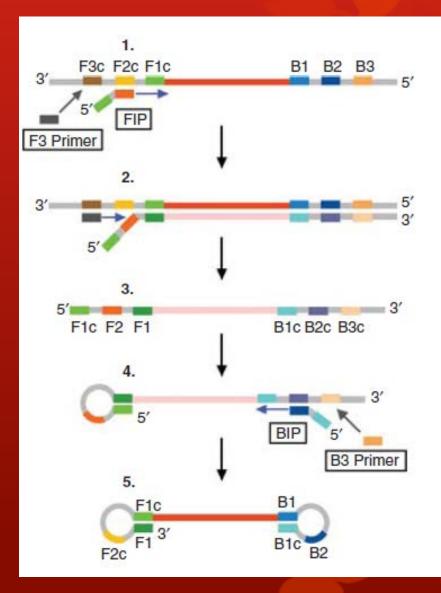
- Temperature cycling
- Wavelength-specific fluorescent excitation
- Emission measurement

• Limitations

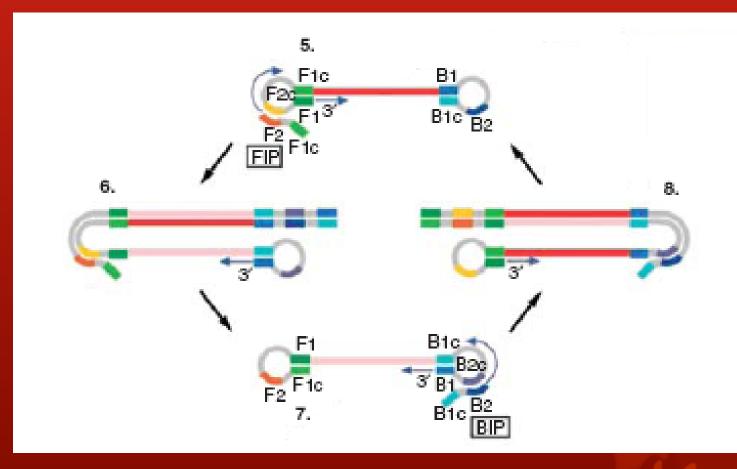

- Power consumption
- Optical arrangements required

Production of low-cost, simple and robust instruments

- LAMP
- Loop-mediated amplification
- Alternative amplification method
- Strand-displacing polymerase
- Isothermal amplification (≤65°C)
- 4 primers recognize 6 regions



LAMP


Tomita et al. (2008)

1. Starting-structure producing step

LAMP

2. Cycling amplification step

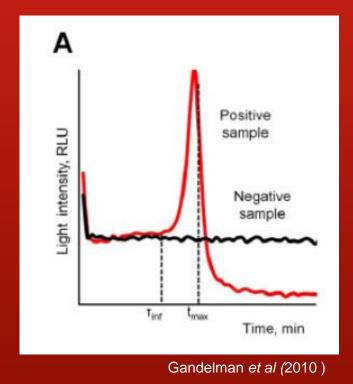
Tomita et al. (2008)

• BART

• Bioluminescent Assay in Real-Time

• Alternative amplification detection method

• Inorganic pyrophosphate (PP_i)


• By-product of all amplification

BART

(DNA) _n + dNTP	\rightarrow (DNA) _{n+1} + PP _i	DNA polymerase (1)
PP, + APS	\rightarrow ATP + SO ₄ ²⁻	ATP sulfurylase (2)
ATP + O2 + lucifer	in \rightarrow Oxyluciferin + AMP+ PP _i + CO ₂ + light	Firefly luciferase (3)
		Gandelman <i>et al (</i> 2010)

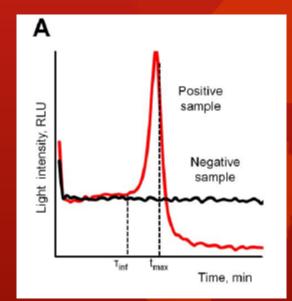
- 1 molecule released each nucleotide addition
- Proportional to amount of polynucleotide synthesized
- Starting template concentration

55°C 1hr

• qPCR curve vs BART curve

Sigmoidal curve vs sharp peak

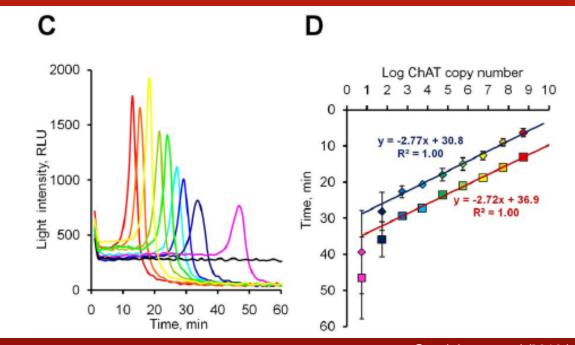
Rapid reduction in bioluminescence after the peak


• APS exhausted

PPi inhibits luciferase

 $(DNA)_n + dNTP \rightarrow (DNA)_{n+1} + PP_i$

 $PP_1 + APS \rightarrow ATP + SO_4^{2-}$


ATP + O₂ + luciferin → Oxyluciferin + AMP+ PP₁ + CO₂ + light

DNA polymerase (1) ATP sulfurylase (2) Firefly luciferase (3)

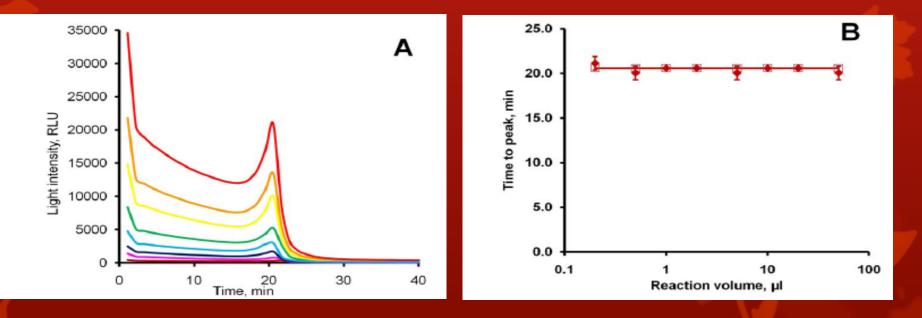
Gandelman et al (2010)

Quantitative LAMP-BART

Gandelman et al (2010)

Copy Number: 10⁸-10

Linear correlation, similar to correlation of Ct value to DNA template load in qPCR


Quantitative LAMP-BART

 Time required for same amount PP_i to be released = amount of target nucleic acid

Time-to-peak a starting target gene conc.

Quantitative LAMP-BART

- Amplification with same DNA conc. but different reaction volume
- Light intensity, reduction in volume
- Time-to-peak unchanged
- Depend on time-to-peak, not absolute light intensity output

Gandelman et al (2010)

Application of LAMP-BART

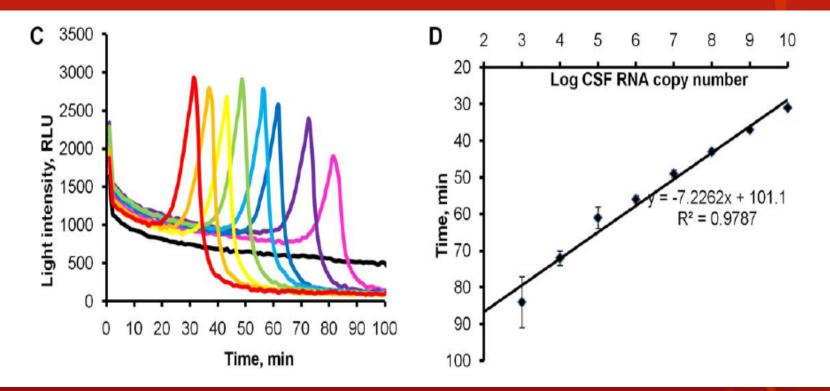
- Detection of Chlamydia trachomatis (CT) in clinical specimens
- 105 clinicial urine specimens of unknown CT status
- Bacterial DNA isolated
- Compared with qPCR result

Application of LAMP-BART

	LAMP-BART	qPCR
Total number of samples	105	105
CT-positive samples	43 (t _{max} <60 min)	45 (Ct≤40 cycles)
CT-negative samples	62	60 (Ct>40)
Sensitivity, %	95.6	100
Specificity, %	100	100
Assay time	60 min	2.5 hours
Mean t _{max} or Ct/equivalent time	33.6 min	35.2 cycles \sim 1 h 46 min

Gandelman et al (2010)

Application of RT-LAMP-BART

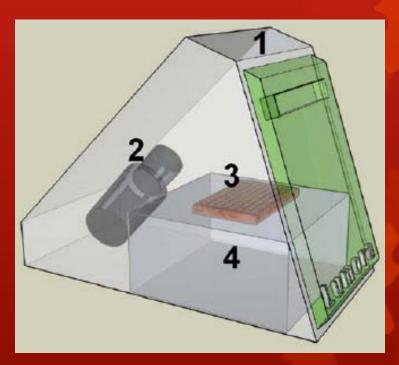

• Classical swine fever virus

• Detection of RNA template

• Purified RNA amplified in closed-tube one-step format

Reverse transcription, LAMP amplification, BART detection reagents

Application of RT-LAMP-BART


Gandelman et al (2010)

Copy Number: 10¹⁰-10³

Coupled RT-LAMP-BART quantifiaction and detection of viral RNA genome for diagnostics

Instruments for LAMP-BART

Gandelman et al (2010)

Advantages of LAMP-BART

- Coupled amplification and detection system in single closed tube
- Reduce risk of contamination
- Effectively used on patient-derived samples, tolerance to inhibitors in patient sample
- Straightforward, simple, rapid
- LAMP: 4 primers, 6 recognition sites, high specificity
- Cost-effective
 - Simple light detector
 - No need temperature cycle, wavelength-specific fluorescent excitation, emission measurement
 - Require only a constant temp. maintained by heat block
- Quantitation rely on time-to-peak but not absolute intensity
 - Tolerance to contaminating ATP or PP_i
 - Rate of change not absolute level determined

Possible drawback of LAMP-BART

 Single signal, not possible for mutiplex PCR

Conclusion

Novel coupled amplification and detection

• Single close-tubed format

• Simple, fast, cost-effect quantitative assay

References

- NCBI. 2012. Published online: http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/Tech QPCR.shtml
- Tomita *et al.* 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols 3, - 877 - 882
- Gandelman *et al.* 2010. Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time. PloS ONE, 5(11): e14155
- Kwok J and Kwong KM. 2012. Loop-mediated isothermal amplification for detection of HLA-B*58:01 allele. Tissue Antigens., ISSN 0001-2815
- Kiddle *et al.* 2012. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol. 30; 12: 15